Amorphous nanomaterials in electrocatalytic water splitting
نویسندگان
چکیده
Electrochemical water splitting, as a promising method for hydrogen production, has attracted significant attention. However, the lack of an electrocatalyst with small energy loss and fast reaction kinetics hindered development this technology. Amorphous nanomaterials short-range order long-range disorder features have recently shown superior activity compared to their crystalline counterparts in electrolysis. The enhanced arising from intrinsic disordered structure results more active sites higher such sites. In regard, review is aimed at summarizing progress amorphous electrocatalysts splitting. First, synthesis strategies are discussed. Characterization tools then summarized. Moreover, origin stability analyzed. Finally, current challenges opportunities research area This aims provide guide designing developing fascinating electrocatalytic splitting performance.
منابع مشابه
Ultrathin metal-organic framework array for efficient electrocatalytic water splitting
Two-dimensional metal-organic frameworks represent a family of materials with attractive chemical and structural properties, which are usually prepared in the form of bulk powders. Here we show a generic approach to fabricate ultrathin nanosheet array of metal-organic frameworks on different substrates through a dissolution-crystallization mechanism. These materials exhibit intriguing propertie...
متن کاملOne‐Dimensional Earth‐Abundant Nanomaterials for Water‐Splitting Electrocatalysts
Hydrogen fuel acquisition based on electrochemical or photoelectrochemical water splitting represents one of the most promising means for the fast increase of global energy need, capable of offering a clean and sustainable energy resource with zero carbon footprints in the environment. The key to the success of this goal is the realization of robust earth-abundant materials and cost-effective r...
متن کاملAmorphous FeOOH oxygen evolution reaction catalyst for photoelectrochemical water splitting.
Reaching the goal of economical photoelectrochemical (PEC) water splitting will likely require the combination of efficient solar absorbers with high activity electrocatalysts for the hydrogen and oxygen evolution reactions (HER and OER). Toward this goal, we synthesized an amorphous FeOOH (a-FeOOH) phase that has not previously been studied as an OER catalyst. The a-FeOOH films show activity c...
متن کاملRecent Progress in Metal‐Organic Frameworks for Applications in Electrocatalytic and Photocatalytic Water Splitting
The development of clean and renewable energy materials as alternatives to fossil fuels is foreseen as a potential solution to the crucial problems of environmental pollution and energy shortages. Hydrogen is an ideal energy material for the future, and water splitting using solar/electrical energy is one way to generate hydrogen. Metal-organic frameworks (MOFs) are a class of porous materials ...
متن کاملIdentification of highly active Fe sites in (Ni,Fe)OOH for electrocatalytic water splitting.
Highly active catalysts for the oxygen evolution reaction (OER) are required for the development of photoelectrochemical devices that generate hydrogen efficiently from water using solar energy. Here, we identify the origin of a 500-fold OER activity enhancement that can be achieved with mixed (Ni,Fe)oxyhydroxides (Ni(1-x)Fe(x)OOH) over their pure Ni and Fe parent compounds, resulting in one of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Chinese Journal of Catalysis
سال: 2021
ISSN: ['0253-9837', '1872-2067']
DOI: https://doi.org/10.1016/s1872-2067(20)63740-8